\(\int \frac {1}{x^2 \sqrt {a+b x^2+c x^4}} \, dx\) [966]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 20, antiderivative size = 294 \[ \int \frac {1}{x^2 \sqrt {a+b x^2+c x^4}} \, dx=-\frac {\sqrt {a+b x^2+c x^4}}{a x}+\frac {\sqrt {c} x \sqrt {a+b x^2+c x^4}}{a \left (\sqrt {a}+\sqrt {c} x^2\right )}-\frac {\sqrt [4]{c} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{a^{3/4} \sqrt {a+b x^2+c x^4}}+\frac {\sqrt [4]{c} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 a^{3/4} \sqrt {a+b x^2+c x^4}} \]

[Out]

-(c*x^4+b*x^2+a)^(1/2)/a/x+x*c^(1/2)*(c*x^4+b*x^2+a)^(1/2)/a/(a^(1/2)+x^2*c^(1/2))-c^(1/4)*(cos(2*arctan(c^(1/
4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticE(sin(2*arctan(c^(1/4)*x/a^(1/4))),1/2*(2-b/a
^(1/2)/c^(1/2))^(1/2))*(a^(1/2)+x^2*c^(1/2))*((c*x^4+b*x^2+a)/(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/a^(3/4)/(c*x^4+b*
x^2+a)^(1/2)+1/2*c^(1/4)*(cos(2*arctan(c^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticF
(sin(2*arctan(c^(1/4)*x/a^(1/4))),1/2*(2-b/a^(1/2)/c^(1/2))^(1/2))*(a^(1/2)+x^2*c^(1/2))*((c*x^4+b*x^2+a)/(a^(
1/2)+x^2*c^(1/2))^2)^(1/2)/a^(3/4)/(c*x^4+b*x^2+a)^(1/2)

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 294, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {1137, 12, 1153, 1117, 1209} \[ \int \frac {1}{x^2 \sqrt {a+b x^2+c x^4}} \, dx=\frac {\sqrt [4]{c} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 a^{3/4} \sqrt {a+b x^2+c x^4}}-\frac {\sqrt [4]{c} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{a^{3/4} \sqrt {a+b x^2+c x^4}}+\frac {\sqrt {c} x \sqrt {a+b x^2+c x^4}}{a \left (\sqrt {a}+\sqrt {c} x^2\right )}-\frac {\sqrt {a+b x^2+c x^4}}{a x} \]

[In]

Int[1/(x^2*Sqrt[a + b*x^2 + c*x^4]),x]

[Out]

-(Sqrt[a + b*x^2 + c*x^4]/(a*x)) + (Sqrt[c]*x*Sqrt[a + b*x^2 + c*x^4])/(a*(Sqrt[a] + Sqrt[c]*x^2)) - (c^(1/4)*
(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(
1/4)], (2 - b/(Sqrt[a]*Sqrt[c]))/4])/(a^(3/4)*Sqrt[a + b*x^2 + c*x^4]) + (c^(1/4)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt
[(a + b*x^2 + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], (2 - b/(Sqrt[a]*Sqrt[
c]))/4])/(2*a^(3/4)*Sqrt[a + b*x^2 + c*x^4])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 1117

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(
4*c))], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1137

Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*x^2 +
 c*x^4)^(p + 1)/(a*d*(m + 1))), x] - Dist[1/(a*d^2*(m + 1)), Int[(d*x)^(m + 2)*(b*(m + 2*p + 3) + c*(m + 4*p +
 5)*x^2)*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[m, -1] && In
tegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1153

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[1/q, Int[1/Sqrt[
a + b*x^2 + c*x^4], x], x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]] /; FreeQ[{a, b, c}, x]
 && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rule 1209

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(
-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 +
 q^2*x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c))], x] /; EqQ[e + d*q^2,
 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]

Rubi steps \begin{align*} \text {integral}& = -\frac {\sqrt {a+b x^2+c x^4}}{a x}+\frac {\int \frac {c x^2}{\sqrt {a+b x^2+c x^4}} \, dx}{a} \\ & = -\frac {\sqrt {a+b x^2+c x^4}}{a x}+\frac {c \int \frac {x^2}{\sqrt {a+b x^2+c x^4}} \, dx}{a} \\ & = -\frac {\sqrt {a+b x^2+c x^4}}{a x}+\frac {\sqrt {c} \int \frac {1}{\sqrt {a+b x^2+c x^4}} \, dx}{\sqrt {a}}-\frac {\sqrt {c} \int \frac {1-\frac {\sqrt {c} x^2}{\sqrt {a}}}{\sqrt {a+b x^2+c x^4}} \, dx}{\sqrt {a}} \\ & = -\frac {\sqrt {a+b x^2+c x^4}}{a x}+\frac {\sqrt {c} x \sqrt {a+b x^2+c x^4}}{a \left (\sqrt {a}+\sqrt {c} x^2\right )}-\frac {\sqrt [4]{c} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{a^{3/4} \sqrt {a+b x^2+c x^4}}+\frac {\sqrt [4]{c} \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+b x^2+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{4} \left (2-\frac {b}{\sqrt {a} \sqrt {c}}\right )\right )}{2 a^{3/4} \sqrt {a+b x^2+c x^4}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.32 (sec) , antiderivative size = 298, normalized size of antiderivative = 1.01 \[ \int \frac {1}{x^2 \sqrt {a+b x^2+c x^4}} \, dx=\frac {-\frac {4 \left (a+b x^2+c x^4\right )}{x}+\frac {i \sqrt {2} \left (-b+\sqrt {b^2-4 a c}\right ) \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}} \left (E\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right )|\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )-\operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {2} \sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}} x\right ),\frac {b+\sqrt {b^2-4 a c}}{b-\sqrt {b^2-4 a c}}\right )\right )}{\sqrt {\frac {c}{b+\sqrt {b^2-4 a c}}}}}{4 a \sqrt {a+b x^2+c x^4}} \]

[In]

Integrate[1/(x^2*Sqrt[a + b*x^2 + c*x^4]),x]

[Out]

((-4*(a + b*x^2 + c*x^4))/x + (I*Sqrt[2]*(-b + Sqrt[b^2 - 4*a*c])*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b +
Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*(EllipticE[I*ArcSinh[Sqrt[2]*Sqrt[c/(b + Sqrt[
b^2 - 4*a*c])]*x], (b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a*c])] - EllipticF[I*ArcSinh[Sqrt[2]*Sqrt[c/(b +
Sqrt[b^2 - 4*a*c])]*x], (b + Sqrt[b^2 - 4*a*c])/(b - Sqrt[b^2 - 4*a*c])]))/Sqrt[c/(b + Sqrt[b^2 - 4*a*c])])/(4
*a*Sqrt[a + b*x^2 + c*x^4])

Maple [A] (verified)

Time = 0.64 (sec) , antiderivative size = 239, normalized size of antiderivative = 0.81

method result size
default \(-\frac {\sqrt {c \,x^{4}+b \,x^{2}+a}}{a x}-\frac {c \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (F\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-E\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{2 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\) \(239\)
risch \(-\frac {\sqrt {c \,x^{4}+b \,x^{2}+a}}{a x}-\frac {c \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (F\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-E\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{2 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\) \(239\)
elliptic \(-\frac {\sqrt {c \,x^{4}+b \,x^{2}+a}}{a x}-\frac {c \sqrt {2}\, \sqrt {4-\frac {2 \left (-b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \sqrt {4+\frac {2 \left (b +\sqrt {-4 a c +b^{2}}\right ) x^{2}}{a}}\, \left (F\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )-E\left (\frac {x \sqrt {2}\, \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}}{2}, \frac {\sqrt {-4+\frac {2 b \left (b +\sqrt {-4 a c +b^{2}}\right )}{a c}}}{2}\right )\right )}{2 \sqrt {\frac {-b +\sqrt {-4 a c +b^{2}}}{a}}\, \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {-4 a c +b^{2}}\right )}\) \(239\)

[In]

int(1/x^2/(c*x^4+b*x^2+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-(c*x^4+b*x^2+a)^(1/2)/a/x-1/2*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2)*(4-2*(-b+(-4*a*c+b^2)^(1/2))/a*x^2)
^(1/2)*(4+2*(b+(-4*a*c+b^2)^(1/2))/a*x^2)^(1/2)/(c*x^4+b*x^2+a)^(1/2)/(b+(-4*a*c+b^2)^(1/2))*(EllipticF(1/2*x*
2^(1/2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2))-EllipticE(1/2*x*2^(1/
2)*((-b+(-4*a*c+b^2)^(1/2))/a)^(1/2),1/2*(-4+2*b*(b+(-4*a*c+b^2)^(1/2))/a/c)^(1/2)))

Fricas [A] (verification not implemented)

none

Time = 0.09 (sec) , antiderivative size = 269, normalized size of antiderivative = 0.91 \[ \int \frac {1}{x^2 \sqrt {a+b x^2+c x^4}} \, dx=-\frac {\sqrt {\frac {1}{2}} {\left (a x \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b x\right )} \sqrt {a} \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}} E(\arcsin \left (\sqrt {\frac {1}{2}} x \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}}\right )\,|\,\frac {a b \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} + b^{2} - 2 \, a c}{2 \, a c}) - \sqrt {\frac {1}{2}} {\left (a x \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b x\right )} \sqrt {a} \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}} F(\arcsin \left (\sqrt {\frac {1}{2}} x \sqrt {\frac {a \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} - b}{a}}\right )\,|\,\frac {a b \sqrt {\frac {b^{2} - 4 \, a c}{a^{2}}} + b^{2} - 2 \, a c}{2 \, a c}) + 2 \, \sqrt {c x^{4} + b x^{2} + a} a}{2 \, a^{2} x} \]

[In]

integrate(1/x^2/(c*x^4+b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

-1/2*(sqrt(1/2)*(a*x*sqrt((b^2 - 4*a*c)/a^2) - b*x)*sqrt(a)*sqrt((a*sqrt((b^2 - 4*a*c)/a^2) - b)/a)*elliptic_e
(arcsin(sqrt(1/2)*x*sqrt((a*sqrt((b^2 - 4*a*c)/a^2) - b)/a)), 1/2*(a*b*sqrt((b^2 - 4*a*c)/a^2) + b^2 - 2*a*c)/
(a*c)) - sqrt(1/2)*(a*x*sqrt((b^2 - 4*a*c)/a^2) - b*x)*sqrt(a)*sqrt((a*sqrt((b^2 - 4*a*c)/a^2) - b)/a)*ellipti
c_f(arcsin(sqrt(1/2)*x*sqrt((a*sqrt((b^2 - 4*a*c)/a^2) - b)/a)), 1/2*(a*b*sqrt((b^2 - 4*a*c)/a^2) + b^2 - 2*a*
c)/(a*c)) + 2*sqrt(c*x^4 + b*x^2 + a)*a)/(a^2*x)

Sympy [F]

\[ \int \frac {1}{x^2 \sqrt {a+b x^2+c x^4}} \, dx=\int \frac {1}{x^{2} \sqrt {a + b x^{2} + c x^{4}}}\, dx \]

[In]

integrate(1/x**2/(c*x**4+b*x**2+a)**(1/2),x)

[Out]

Integral(1/(x**2*sqrt(a + b*x**2 + c*x**4)), x)

Maxima [F]

\[ \int \frac {1}{x^2 \sqrt {a+b x^2+c x^4}} \, dx=\int { \frac {1}{\sqrt {c x^{4} + b x^{2} + a} x^{2}} \,d x } \]

[In]

integrate(1/x^2/(c*x^4+b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^4 + b*x^2 + a)*x^2), x)

Giac [F]

\[ \int \frac {1}{x^2 \sqrt {a+b x^2+c x^4}} \, dx=\int { \frac {1}{\sqrt {c x^{4} + b x^{2} + a} x^{2}} \,d x } \]

[In]

integrate(1/x^2/(c*x^4+b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(c*x^4 + b*x^2 + a)*x^2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x^2 \sqrt {a+b x^2+c x^4}} \, dx=\int \frac {1}{x^2\,\sqrt {c\,x^4+b\,x^2+a}} \,d x \]

[In]

int(1/(x^2*(a + b*x^2 + c*x^4)^(1/2)),x)

[Out]

int(1/(x^2*(a + b*x^2 + c*x^4)^(1/2)), x)